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Abstract-The nonaxisymmetric contact problem between an inflated membrane and a rigid indentor is
considered. The membrane is assumed to be an initially thin plane sheet. The shape and the boundary of the
contact region and the configuration of the deformed membrane under both inflation and indentation are found
by employing the minimum potential energy principle subjected to an inequality constraint condition, A slack
variable that converts the inequality constraint to an equality constraint condition is introduced. The
coordinate functions that describe the deformed configurations of the membrane are assumed to be
represented by a series of geometric admissible functions with unknown coefficients, The unknown
coefficients that minimize the total potential energy are determined by Fletcher and Powell's [1] iterative
descent method for finding the minimum of a function of multivariables.

INTRODUCTION

Several axisymmetric contact problems have been solved recently. The contact problem
between an inflated spherical membrane and two parallel rigid plates was solved by Feng and
Yang [2]. The indentation of a rigid sphere to a plane circular membrane was solved by Yang and
Hsu [3]. In all of these problems, the contact boundaries are determined by a I-dimensional grid
search technique. Since they are axisymmetric problems, the shape of the contact region is
determined automatically as soon as the boundary is determined.

The inflation of a neo-Hookean square membrane was solved by Yang and Lu[4]. They
obtained the deformed configurations of the inflated membrane by solving a set of partial
differential equations. Feng and Huang[5] solved the same problem for a square membrane of
Mooney material by employing the minimum potential energy principle. The energy solutions
agree with the solutions obtained by equilibrium equations.

The 2-dimensional grid search techniques for nonaxisymmetric contact problems become
impractical as far as the computing time is concerned. In this paper, the nonaxisymmetric contact
problem between an inflated plane membrane and a rigid indentor is considered. The shape of the
contact region and the boundary between the contact and noncontact regions are determined
without employing grid search techniques. The configurations for the deformed membrane under
both inflation and indentation are determined by the minimum potential energy principle. In the
formulation, it is assumed that: the rigid indentor is fixed in space and the inflating membrane is
brought into contact with the indentor; there is no friction between contact surfaces; the
thickness of the membrane is small compared with other dimensions of the membrane; therefore,
the strain variation across the midsurface of the deformed membrane is negligible and the
physical quantities across the midsurface of the deformed membrane are equal to the physical
quantities at the midsurface of the deformed membrane. The total strain energy for the deformed
membrane and the work done by the inflating pressure are calculated. They are functions of the
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deformed coordinates that describe the configurations of the deformed membrane. Due to the
presence of the indentor, the membrane may obtain an equilibrium configuration only in the
region outside the indentor. Therefore, the equilibrium configuration is subjected to an inequality
constraint condition. A slack variable is introduced to convert the inequality constraint condition
into an equality constraint condition. The total potential energy is written in terms of the
deformed coordinates. The unknown geometric admissible functions for the deformed
coordinate and the slack variable are further written in terms of a series of trigonometric
functions with unknown coefficients. The unknown coefficients are determined by the minimum
potential energy principle. Fletcher and Powell's [1] iterative descent method for finding the
minimum for a function of multivariables is employed. The shape of the contact region and the
configurations of the deformed membrane are obtained thereafter.

A square plane membrane is considered as an example. The strain-energy density function of
the membrane is assumed to have the Mooney form. The rigid indentor is an elliptic paraboloid
whose axis of symmetry coincides with the axis perpendicular to the undeformed membrane and
passes through the center of the undeformed square membrane.

DEFORMATION ANALYSIS

A point po in an undeformed plane membrane is located at (x" X2, x,) as shown in Fig. 1.
During deformation, point po is deformed to a point qo on the deformed membrane. Point qo is
located at (y" Y2, y,). Yi and Xi are referred to the same coordinate system. The deformation is
assumed to be continuous and the mapping between po and qo is in one-to-one correspondence;
therefore, Yi are functions of x" i.e.

(I)

(2)

Indicial notations are used in this paper unless otherwise specified. The Latin indices denote a
range of 1, 2, and 3. The Greek indices denote a range of 1 and 2. The repeated indices denote
summation. The ( ),j denotes the partial differentiation with respect to Xj. Another point p, is
located in the neighborhood of the point Po. p, is located at (Xl +dXI, X2 +dX2, X, +dx,) in the
undeformed membrane. The corresponding point of p, in the deformed configuration is q,. q, is
located at (y, +dy" Y2 +dY2' y, +dy,). The Green strain tensor Elj in terms of y" Y2 is

E = l('Y-k Vk' - {)
I} 2 ,I ... ,J 1J

where {)ij is the Kronecker delta.

/ Undeformed membrane

----<:;;......,,,....
.~(xi+dxl ,x2+dxz ' x3+dx3 )

XI (YI )

~ (XI '%2 ,X3 )'
o

Fig, I, The geometry of the deformation of a membrane.
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The membrane considered in this paper is assumed to be a plane thin membrane. Let the plane
(Xl, XZ, 0) coincide with the midsurface of the undeformed membrane as shown in Fig. 2. A point
on the undeformed midsurface is described by (Xl, Xz, 0). The corresponding point on the
deformed midsurface is described by (Yh Yz, Y3). A point not on the undeformed midsurface is
described by (Xl, Xz, X3). The corresponding point on the deformed membrane is (Yh Yz, Y3). Since
we assume the thickness of the membrane is small compared with other dimensions of the
membrane, physical quantities' variations across the deformed midsurface are neglected and the
physical quantities are equal to those on the deformed midsurface. Hence, a segment
perpendicular to the undeformed midsurface remains perpendicular to the deformed midsurface
during deformation. Based on this relation, we have

(3)

where A is the principle stretch ratio in the direction normal to the deformed midsurface. ni are
the components of a unit normal vector n of the deformed midsurface at point (Ylo Yz, Y3).

Let i; be the unit vectors in the Xi direction. Two infinitesimal perpendicular vectors POPI and
popz on the undeformed midsurface pass through point PO(Xb xz) as shown in Fig. 2. For
simplicity, let PoPt = dxtil and popz = dxziz. These vectors are stretched and rotated during the
deformation. The two new vectors passing through point Qo and corresponding to POPI and popz
are QOQI and QoQz. Points QI and Qz are located at (YI + YI,I dx b Yz + YZ.I dx" Y3 + hI dx ,) and
(YI + YI.Z dxz, Yz +Yz.z dxz, Y3 + Y3.Z dxz) respectively. QoQ, and QoQz are

QoQt = Yi.1 dxlii

QoQz= Yi.Z dxzi;.

The unit normal vector perpendicular to the midsurface through point Qo is

where

and eijk is the permutation symbol.

X3(Y3)~O~

\ '~
Q Deformed

2 midsurface

~'Y-)L/ Unreformedl mid surface

XI (YI )

Fig. 2. The geometry of the deformation of the midsurfaces of a membrane.

(4)

(5)

(6)
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The incompressibility condition states

(7)

where ho is the thickness of the undeformed membrane at point po, hence

I
A =--==.

VAA,
(8)

Equations (5) and (8) relate the unit normal vector of the deformed midsurface and the normal
principle stretch ratio to the unknown functions of x I and Xl.

THE POTENTIAL ENERGY

The strain energy density function per unit volume for an incompressible material is

II and 12 are first and second strain invariants, and

11 =3+2Eii

12 = 3+ 4E" + 2(E,rEss - E,sErs ).

Since the membrane is relatively thin, X3 is small value, and equation (3) yields

With the relations given in equations (2) and (11), equations (10) reduce to

11== yi.l + yi,2 + y~,1 + y~.2 + yi.l + yi.2 + (A 1
2+A/+A/r1

12 == (yi., + yi.2 + y~.1 + y~.2 + yL + yi.2)(AI2+A/+A/r l + (A 1
2+A2

2+A/).

The total strain energy for the deformed membrane is

u == i u(!t, 12) dv

(9)

(10)

(11)

(12)

(13)

where v is the total material volume of the undeformed membrane.
The work done by the inflating pressure, p, during inflation is pV where V is the total volume

between the inflated surface and the Yl - Y2 plane; hence

(14)

where dR is the projection of the area formed by two infinitesimal vectors QOQI and QOQ2 onto
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the y, - yz plane, i.e.

Equation (14) is reduced to

hence, the total potential energy of the deformed membrane is

where IT is then a function of the unknown quantities yJ, yz and Y3.
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(15)

(16)

(17)

GEOMETRIC CONSTRAINTS

A schematic diagram for an inflated membrane under contact is shown in Fig. 3. The indentor
is assumed to be rigid. The contact surfaces are assumed to be frictionless. In this paper, the
indentor is assumed to be fixed in space. The plane membrane is brought into contact with the
indentor through the inflating process. Since the indentor is assumed to be fixed, no work is done
by the indentor during inflation of the membrane. The shape of the indentor is known and can be
written as

(18)

Since the space for the deformed membrane is no longer a free space, the membrane may
obtain the equilibrium state only in a region outside the indentor. Therefore, the equilibrium
configuration is subjected to the constraint condition

Undefarmed membrane 1-·--- a---~

(19)

Fig. 3. A schematic diagram of an inflated rectangular membrane under contact.
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We introduce a slack variable 1) (x" X2) which converts the inequality constraint condition (19)
into the equality constraint condition, i.e.

(20)

The slack variable 1) is a real number for all x, and X2. It is an unknown variable that must be
determined.

From the constraint equation (20), y, can be solved in terms of y" Y2. and

(21)

Substituting equation (21) into equation (17), the potential energy reduces to

(22)

where y" Y2, and 1) are functions of x I and x 2 and are to be determined.

NUMERICAL SOLUTION

The solutions for the functions y,(x" Xz), Y2(X" X2), and 1) (x" X2) are based on the minimum
potential energy principle that of all geometrically admissible deformed configurations, the
equilibrium configuration minimizes the associated potential energy functional. The geometri­
cally admissible deformed configurations are those satisfying the geometric boundary and
geometric constraint conditions. They can be written as a finite series of geometrically admissible
functions with unknown coefficients. For determining the unknown functions of y" Yz, and 1) in
equation (22), the geometrically admissible functions are

N N

y, = f,(x" X2) +2: 2: aijCp~?(X" X2)
i=1 j=l

N N

Y2 = fz(x" X2) +2: 2: bijcP~r(X" X2)
j I j=l

N N

1) = fix" X2) + 2: 2: CijcPW(x" X2)'
i~1 j-=I

Substituting equations (23) into equation (22), the potential energy is reduced to

(23)

(24)

where the 3 x N 2 unknowns aii- bij , and Cij (i = 1, ... , N; j = 1, ... , N) are to be determined. In
this paper, these unknowns are determined by Fletcher and Powell's iterative descent method for
finding the minimum value of n. In order to apply Fletcher and Powell's method for determining
these unknowns the gradient vector g of the potential energy functional n is needed

(25)

where gT denotes the transpose of a vector g. After evaluating the necessary derivatives for
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equations (24) and (25), the unknown coefficients for the geometrically admissible functions may
be determined by the standard method for minimizing a functional. The IBM SSP FMFP is used
for numerical calculations in this paper.

EXAMPLE

A rectangular thin plane membrane with dimensions 2a x 2b x ho is clamped to a rectangular
hole of the same size. The membrane is inflated by a pressure p and the inflated membrane is
brought into contact with an elliptic paraboloid indentor whose axis of symmetry coincides with
the axis perpendicular to the undeformed membrane and passes through the center of the
undeformed rectangular membrane as shown in Fig. 3. The boundary of the elliptic paraboloid
indentor is described by the following equation:

(26)

where d is the distance between the tip of the elliptic paraboloid indentor and the center of the
undeformed rectangular membrane. '1 and '2 are focal lengths in the YI and Y2 directions
respectively. In the special case '1 = '2 the indentor is a paraboloid of revolution.

The following dimensionless quantities are used in this example:

Yi=~ D=E. Ra =~a a a
(27)

L=!?- P = pa X =xa

clho
a •

a a

Due the the presence of the elliptic paraboloid, the constraint equation for the deformed
membrane is

(28)

Introducing the slack variable 'T/ (XI, X 2) which converts the inequality into the equality condition

(29)

Y3 can be solved in terms of Yt, Y2, and 'T/

(30)

For the numerical calculation the strain-energy density function per unit volume of the
undeformed membrane is assumed to have the Mooney form

(31)
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where c, and f are material constants. c, is in the units of a stress and f is a dimensionless
constant.

The total potential energy of the deformed membrane under both inflation and contact with
the indentor is

(32)

where U(XI, X2) and fI are additional two dimensional quantities.

The boundary conditions for Y" Y 2 , and Y/ are

(33)

X,=:tl;

X 2 =:tL;

Y,=:t I;

Y,=X,;

Y2 = X 2

Y2 = :tL

Xt=:tl;

X 2 =:tL;

[
1 X/J1/2

Y/ = D +R/+ R/ (34)

Therefore, the geometric admissible functions for Y" Y2 , and Y/ are

~ ~ " (2j -1)7TX2
Y, = X, +~ ~ aij SIlll7TX, cos 2L

Y _ X ~ ~ b . ;7TX2 (2j - I)7TX t

2 - 2 +~ ~ ij Sill L cos 2

_ [D X/ X/JII2 _ ~ ~. (2; - I)7TX, (2j - I)7TX2

Y/ - + R 2 + R 2 £.J "" Ci] cos 2 cos 2L .
I 2 /=1 J=I

(35)

Substituting equations (6, 12,27,30,31,35) and the required derivatives into equation (32), the
total potential energy for the deformed membrane is reduced to the form shown in equation (24).
With the proper derivatives, the gradient vector g of the potential energy functional (25) can be
obtained. The unknown coefficients aij, bij, and Cij(i = I, ... , N; j = I, ... ,N) that minimize the
potential energy functional are thereafter calculated by Fletcher and Powell's iterative descent
method. Y 3 is then determined by equation (30); hence the equilibrium configurations for a
rectangular membrane under both inflations and indentations are obtained.

RESULTS AND DISCUSSION

The results for an inflated square membrane of Mooney materials (f = 0'1) under contact are
presented in this paper. The square membrane has a dimension 2a x 2a x ho. The membrane is
inflated and brought into contact with an elliptic paraboloid with R, = R2 = 1. The boundary
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between contact and noncontact regions is determined when Y" Y z and Y3 satisfy

Y3 - D - (Y/ + Y/) ~ €

445

(36)

where € = 0·005 is used for numerical calculations.
The side views for an inflated square membrane under contact for various values of Dare

shown in Fig. 4. The sequential grid distortion and the constant contour lines for the deformed
membrane are shown in Fig. 5. The dotted lines shown on the figures are the boundaries

Fig. 4. Profiles of an inflated square Mooney membrane (f = 0·1, p = 2,0) under paraboloid contact.

Table I. Minimizing coefficients, O;j, for the example (p = 2·0, f = 0·1,
D =0·3).

~ 2

1 0·12424 +00 -0·56457 -02 -0·17290 -02
2 -0·40440 -01 0·16829 -02 0·13068 -02
3 -0·11783 -01 0·19286 -02 0·22488 -02

Table 2. Minimizing coefficients, C;jo for the example (p = 2·0. f = 0·1,
D =0·3).

>c 2

1 0·43840 +00 0·10708 +00 -0·23836 -01
2 0·10708 +00 0·31997 -01 -0,65264 -02
3 -0·23837 -01 -0,65266 -02 -0·23843 -03
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between the contact and noncontact regions. The boundary of contact departs from the circular
shape as the contact proceeds. The method presented in this paper is applicable for all values of
L, R I and R2 • The contact boundary is not a circular shape in general as shown by Feng et al. [6}.

In this paper the distance D is always positive. For negative values of D, the third equation of
(35) must be revised so that the square root is always real. However, the formulation and solution
technique remain unchanged.
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The error in the solution depends on the number of terms. Tables 1 and 2 list the coefficients
alj and Clj (i = 1,2,3; j = 1,2,3). The convergence of the series can be observed. The coefficients
blj are equal to alj due to symmetry. Also due to symmetry, the coefficient Clj is equal to Cji as
shown in the table. The error of the last digit is due to the error in numerical calculation.

The boundary between contact and noncontact regions is sensitive to the values of N.
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However, it converges to the exact solution as the deformation converges to its exact solution.
The computing time increases significantly as N increases. For the purpose of illustrating the
formulation and the solution technique N = 3 is used in this paper.

CONCLUSIONS

The equilibrium equations for membrane problems given by Green and Adkins [7] can be
derived from the minimum potential energy principle. The solutions obtained by the energy
method and the equilibrium equations should yield the same results. However, it has been
demonstrated that the formulation as well as the numerical calculations for the energy method
are simpler. This is especially true for nonaxisymmetric contact problems.

Contact problems often arise in studying the mechanics of tires and air bags. This paper offers
a method to determine the shapes of the contact region and the configurations of the deformed
membranes.

The stress in the membrane can be determined after the deformation is found. The force
acting on the indentor is determined thereafter.
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